An Improved Byzantine Agreement Algorithm for Synchronous Systems with Mobile Faults
نویسندگان
چکیده
We study the problem of Byzantine agreement in synchronous systems where malicious agents can move from one process to another and try to corrupt them. This model is known as mobile Byzantine faults. In a previous result [10], Garay has shown that n > 6t (n is the total number of processes, and t is the number of mobile faults) is sufficient to solve this problem even in the presence of strong agents. These agents can move at full speed (in the sense that each agent can take a movement in every round) and can make corrupted processes forget that they run the algorithm (as a result, after recovery a process must learn the current state of computation including the code from other processes). Many following results [3] have improved the above result but with some additional assumptions such as a corrupted process must recover and learn the current state of computation before another process can fail instead of it. The question, whether the result of Garay can be improved without any additional assumption, remains open. In this paper, we answer this question by providing an algorithm MBA that works with n > 4t.
منابع مشابه
Agreement in synchronous networks with ubiquitous faults
In this paper we are interested in synchronous distributed systems subject to transient and ubiquitous failures. This includes systems where failures will occur on any communication link, systems where every processor will experience at one time or another send or receive failure, etc., and, following a failure, normal functioning resuming after a finite time. Notice that these cases cannot be ...
متن کاملFormally Verified Byzantine Agreement in Presence of Link Faults
This paper shows that deterministic consensus in synchronous distributed systems with link faults is possible, despite the impossibility result of (Gray, 1978). Instead of using randomization, we overcome this impossibility by moderately restricting the inconsistency that link faults may cause system-wide. Relying upon a novel hybrid fault model that provides different classes of faults for bot...
متن کاملBrief Announcement: A Leader-free Byzantine Consensus Algorithm
We consider the consensus problem in a partially synchronous system with Byzantine faults. In a distributed system of n processes, where each process has an initial value, Byzantine consensus is the problem of agreeing on a common value, even though some of the processes may fail in arbitrary, even malicious, ways. It is shown in [11] that — in a synchronous system — 3t + 1 processes are needed...
متن کاملStabilizing Consensus in Mobile Networks
Inspired by the characteristics of biologically-motivated systems consisting of autonomous agents, we define the notion of stabilizing consensus in fully decentralized and highly dynamic ad hoc systems. Stabilizing consensus requires non-faulty nodes to eventually agree on one of their inputs, but individual nodes do not necessarily know when agreement is reached. First we show that, similar to...
متن کاملA Leader-Free Byzantine Consensus Algorithm
The paper considers the consensus problem in a partially synchronous system with Byzantine faults. It turns out that, in the partially synchronous system, all deterministic algorithms that solve consensus with Byzantine faults are leader-based. This is not the case of benign faults, which raises the following fundamental question: is it possible to design a deterministic Byzantine consensus alg...
متن کامل